18 research outputs found

    Machine Learning based Attacks Detection and Countermeasures in IoT

    Get PDF
    While the IoT offers important benefits and opportunities for users, the technology raises various security issues and threats. These threats may include spreading IoT botnets through IoT devices which are the common and most malicious security threat in the world of internet. Protecting the IoT devices against these threats and attacks requires efficient detection. While we need to take into consideration IoT devices memory capacity limitation and low power processors. In this paper, we will focus in proposing low power consumption Machine Learning (ML) techniques for detecting IoT botnet attacks using Random forest as ML-based detection method and describing IoT common attacks with its countermeasures. The experimental result of our proposed solution shows higher accuracy. From the results, we conclude that IoT botnet detection is possible; achieving a higher accuracy rate as an experimental result indicates an accuracy rate of over 99.99% where the true positive rate is 1.000 and the false-negative rate is 0.000

    Authentication Solutions in Industrial Internet of Things: A Survey

    Get PDF
    With the rapid growth of industry 4.0, the Industrial Internet of Things (IIoT) is considered to be a promising solution for converting normal operations to ‘smart’ operations in industrial sectors and systems. The well-known characteristics of IIoT has greatly improved the productivity and quality of many industrial sectors. IIoT allows the connectivity of many industrial smart devices such as, sensors, actuators and gateways. The connectivity feature makes this critical environment vulnerable to various cybersecurity attacks. Subsequently, maintaining the security of IIoT sys-tems remains a challenge to ensure their success. In particular, authenticating the connected IIoT devices is a must to ensure that they can be trusted and prevent any malicious attempts. Hence, the objective of this survey is to overview, discuss and analyze the different solutions related to de-vice authentication in the domain of IIoT. Also, we analyze the IIoT environment in terms of characteristics, architecture and security requirements. Similarly, we highlight the role of (machine-to-machine) M2M communication in IIoT. We further contribute to this survey by outlining several open issues that must be considered when designing authentication schemes for IIoT. Fi-nally, we highlight a number of research directions and open challenges

    An empirical study of Unfairness and Oscillation in ETSI DCC

    Get PDF
    International audience—Performance of Vehicular Adhoc Networks (VANETs) in high node density situation has long been a major field of studies. Particular attention has been paid to the frequent exchange of Cooperative Awareness Messages (CAMs) on which many road safety applications rely. In the present paper, se focus on the European Telecommunications Standard Institute (ETSI) Decentralized Congestion Control (DCC) mechanism, particularly on the evaluation of its facility layers component when applied in the context of dense networks. For this purpose, a set of simulations has been conducted over several scenarios, considering rural highway and urban mobility in order to investigate unfairness and oscillation issues, and analyze the triggering factors. The experimental results show that the latest technical specification of the ETSI DCC presents a significant enhancement in terms of fairness. In contrast, the stability criterion leaves room for improvement as channel load measurement presents (i) considerable fluctuations when only the facility layer control is applied and (i.i) severe state oscillation when different DCC control methods are combined

    A Multi-Objectif Genetic Algorithm-Based Adaptive Weighted Clustering Protocol in VANET

    Get PDF
    International audience—Vehicular Ad hoc NETwork (VANET) is the main component that is used recently for the development of Intelligent Transportation Systems (ITSs). VANET has a highly dynamic and portioned network topology due to the constant and rapid movement of vehicles. Recently, the clustering algorithms are widely used as the control schemes to make VANET topology less dynamic for MAC, routing and security protocols. An efficient clustering algorithm must take into consideration all the necessary information related to node mobility. In this paper, we propose an Adaptive Weighted Clustering Protocol (AWCP), specially designed for vehicular networks, which takes the highway ID, direction of vehicles, position, speed and the number of neighbors vehicles into account in order to enhance the network topology stability. However, the multiple control parameters of our AWCP, make parameter tuning a non-trivial problem. In order to optimize AWCP protocol, we define a multi-objective problem whose inputs are the AWCPs parameters and whose objectives are: providing stable cluster structure as possible, maximizing data delivery rate, and reducing the clustering overhead. We then face this multi-objective problem with the the Multi-Objective Genetic Algorithm (MOGA). We evaluate and compare its performance with other multi-objective optimization techniques: Multi-objective Particle Swarm Optimization (MOPSO) and Multi-objective Differential Evolution (MODE). The experiments analysis reveal that NSGA-II improves the results of MOPSO and MODE in terms of the spacing, spread, and ratio of non-dominated solutions and generational distance metrics used for comparison

    TDMA-based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis and Open Research Issues

    Get PDF
    International audience—Vehicular Ad-hoc NETworks (VANETs) have attracted a lot of attention in the research community in recent years due to their promising applications. VANETs help improve traffic safety and efficiency. Each vehicle can exchange information to inform other vehicles about the current status of the traffic flow or a dangerous situation such as an accident. Road safety and traffic management applications require a reliable communication scheme with minimal transmission collisions, which thus increase the need for an efficient Medium Access Control (MAC) protocol. However, the design of the MAC in a vehicular network is a challenging task due to the high speed of the nodes, the frequent changes in topology, the lack of an infrastructure, and various QoS requirements. Recently several Time Division Multiple Access (TDMA)-based medium access control protocols have been proposed for VANETs in an attempt to ensure that all the vehicles have enough time to send safety messages without collisions and to reduce the end-to-end delay and the packet loss ratio. In this paper, we identify the reasons for using the collision-free medium access control paradigm in VANETs. We then present a novel topology-based classification and we provide an overview of TDMA-based MAC protocols that have been proposed for VANETs. We focus on the characteristics of these protocols, as well as on their benefits and limitations. Finally, we give a qualitative comparison, and we discuss some open issues that need to be tackled in future studies in order to improve the performance of TDMA-based MAC protocols for vehicle to vehicle (V2V) communications

    Using Road IDs to Enhance Clustering in Vehicular Ad hoc Networks

    Get PDF
    International audience—Vehicular ad hoc networks (VANETs) where vehicles act as mobile nodes is an instance of Mobile Ad hoc NETworks (MANETs), which are essentially developed for intelligent transportation systems. A challenging problem when designing communication protocols in VANETs is coping with high vehicle mobility, which causes frequent changes in the network topology and leads to frequent breaks in communication. The clustering technique is being developed to reduce the impact of mobility between neighboring vehicles. In this paper, we propose an Adaptive Weighted Cluster Protocol for VANETs, which is a road map dependent and uses road IDs and movement direction in order to make the clusters structure as stable as possible. The experimental results reveal that AWCP outperforms four other most commonly used clustering protocols in terms of control packet overhead, the packet delivery ratio, and the average cluster lifetime, which are the most usual metrics used for comparing performance

    A Fully Distributed TDMA based MAC Protocol for Vehicular Ad Hoc Networks

    Get PDF
    —The Vehicular Ad-Hoc NETwork (VANET) consists of a set of vehicles moving on roads which can communicate with each other through ad hoc wireless devices. VANET has attracted a lot of attention in the research community in recent years with the main focus on its safety applications. One of the challenges for vehicular network is the design of an efficient Medium Access Control (MAC) protocol due to the hidden node problem, the high speed of the nodes, the frequent changes in topology, the lack of an infrastructure, and various QoS requirements. Motivated by this observation, we design a fully distributed and location-based TDMA scheduling scheme for VANETs networks, named DTMAC. The main goal of this work is to propose a MAC protocol that can provide fairness in accessing the transmission medium, as well as reduce access collision and merging collision under various conditions of vehicular density without having to use expensive spectrum and complex mechanisms such as CDMA or OFDMA. An analytical model of the average access collision probability and throughput are derived which can be used to evaluate the performance of DTMAC protocol as well as to validate the simulation results under different traffic conditions

    Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks

    No full text
    This paper surveys the energy-efficient routing protocols in wireless sensor networks (WSNs). It provides a classification and comparison following a new proposed taxonomy distinguishing nine categories of protocols, namely: Latency-aware and energy-efficient routing, next-hop selection, network architecture, initiator of communication, network topology, protocol operation, delivery mode, path establishment and application type. We analyze each class, discuss its representative routing protocols (mechanisms, advantages, disadvantages…) and compare them based on different parameters under the appropriate class. Simulation results of LEACH, Mod-LEACH, iLEACH, E-DEEC, multichain-PEGASIS and M-GEAR protocols, conducted under the NS3 simulator, show that the routing task must be based on various intelligent techniques to enhance the network lifespan and guarantee better coverage of the sensing area

    MADS Based on DL Techniques on the Internet of Things (IoT): Survey

    No full text
    Technologically speaking, humanity lives in an age of evolution, prosperity, and great development, as a new generation of the Internet has emerged; it is the Internet of Things (IoT) which controls all aspects of lives, from the different devices of the home to the large industries. Despite the tremendous benefits offered by IoT, still there are some challenges regarding privacy and information security. The traditional techniques used in Malware Anomaly Detection Systems (MADS) could not give us as robust protection as we need in IoT environments. Therefore, it needed to be replaced with Deep Learning (DL) techniques to improve the MADS and provide the intelligence solutions to protect against malware, attacks, and intrusions, in order to preserve the privacy of users and increase their confidence in and dependence on IoT systems. This research presents a comprehensive study on security solutions in IoT applications, Intrusion Detection Systems (IDS), Malware Detection Systems (MDS), and the role of artificial intelligent (AI) in improving security in IoT

    Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks

    No full text
    This paper surveys the energy-efficient routing protocols in wireless sensor networks (WSNs). It provides a classification and comparison following a new proposed taxonomy distinguishing nine categories of protocols, namely: Latency-aware and energy-efficient routing, next-hop selection, network architecture, initiator of communication, network topology, protocol operation, delivery mode, path establishment and application type. We analyze each class, discuss its representative routing protocols (mechanisms, advantages, disadvantages…) and compare them based on different parameters under the appropriate class. Simulation results of LEACH, Mod-LEACH, iLEACH, E-DEEC, multichain-PEGASIS and M-GEAR protocols, conducted under the NS3 simulator, show that the routing task must be based on various intelligent techniques to enhance the network lifespan and guarantee better coverage of the sensing area
    corecore